Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[bis[aqua(1,10-phenanthroline)-zinc(II)]- μ_{4}-benzene-1,2,4,5-tetracarboxylato]

The pyromellitate tetraanion in the title polymeric complex, $\left[\mathrm{Zn}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{2} \mathrm{O}_{8}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, uses only one O atom from each carboxylate group to bind to one Zn atom, which is also chelated by the heterocycle; the fifth coordination site of the trigonal bipyramid around the Zn atom is occupied by a water molecule. The ribbons are linked by hydrogen bonds into sheets. The pyromellitate tetranion lies on an inversion center.

Comment

Benzene-1,2,4,5-tetracarboxylic acid forms a large number of complexes with transition metals; for zinc(II), in particular, the authenticated examples include dizinc pyromellitate heptahydrate (Robl, 1987), diammonium pyromellitatozinc octahydrate (Sun et al., 2002), piperazinium tetraaquapyromellitatozincate tetrahydrate (Murugavel et al., 2002), dizinc pyromellitate 4,4'-bipyridine dihydrate (Wu et al., 2001; Yang et al., 2002) and dizinc pyromellitate tetrakisimidazole (Wu et al., 2001).

(I)

In the adducts with bipyridine and imidazole, the dizinc pyromellitate unit displays a chain motif as the tetracarboxylate entity binds to four metal atoms. The present 1,10phenanthroline adduct, (I) (Fig. 1), adopts a linear ribbon structure in which the pyromellitate tetraanion uses only one O atom from each carboxylate group to bind to one Zn atom; each Zn atom is also chelated by the heterocycle and its fifth coordination site is occupied by a water molecule. The pyromellitate tetraanion lies on an inversion center. The geometry

Received 6 December 2004
Accepted 10 January 2005
Online 15 January 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.105$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Xiu-Li Wang, ${ }^{\text {a }}$ Fu-Chen Liu, ${ }^{\text {a }}$

 Jian-Rong Li ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\text {c }}$ *${ }^{\text {a }}$ Department of Chemistry, BoHai University, JinZhou 121000, People's Republic of China,
${ }^{\mathbf{b}}$ Department of Chemistry, Nankai University,
Tianjin 300071, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

ORTEPII plot (Johnson, 1976) illustrating a portion of the chain of (I). Displacement ellipsoids are drawn at the 70% probability level and H atoms are drawn as spheres of arbitrary radii.

Schematic representation of the chain structure.
around the metal atom is trigonal bipyramidal in which the heterocycle spans the axial-equatorial sites. The copper(II) analog having a similar formulation is a tetrahedral compound (Zhang et al., 2003), whereas the cobalt(II) analog is an octahedral compound (Fu et al., 2004). Hydrogen bonds in (I) link the ribbons (Fig. 2) into layers (Table 2).

Experimental

A mixture of zinc nitrate hexahydrate ($180 \mathrm{mg}, 0.6 \mathrm{mmol}$), benzene-$1,2,4,5$-tetracarboxylic acid ($78 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1,10 -phenanthroline ($128 \mathrm{mg}, 0.7 \mathrm{mmol}$) in water (15 ml) was placed in a Teflon-lined stainless-steel Parr bomb that was heated to 413 K for 72 h . The bomb was then cooled to room temperature over a period of 24 h . Colorless crystals were isolated in 20% yield.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Zn}_{2}$
$M_{r}=777.30$
Monoclinic, $P 2_{1} / n$
$a=7.9612$ (2) A 。
$b=11.8020$ (3) \AA
$c=15.3935(4) \AA$
$\beta=99.614$ (1) ${ }^{\circ}$
$V=1426.03(6) \AA^{3}$
$Z=2$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.490, T_{\text {max }}=0.844$
6341 measured reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
3276 reflections
234 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.810 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 10914
reflections
$\theta=2.6-27.5^{\circ}$
$\mu=1.76 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$

3276 independent reflections

$$
2830 \text { reflections with } I>2 \sigma(I)
$$

$$
R_{\mathrm{int}}=0.066
$$

$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-19 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0444 P)^{2}\right. \\
& \quad+0.7927 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.67 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.62 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$1.973(2)$	$\mathrm{Zn} 1-\mathrm{N} 1$	$2.094(2)$
$\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.066(2)$	$\mathrm{Zn} 1-\mathrm{N} 2$	$2.142(2)$
$\mathrm{Zn} 1-\mathrm{O} 1 w$	$2.080(2)$		
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$93.1(1)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1$	$97.3(1)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1 w$	$120.1(1)$	$\mathrm{O}^{4}-\mathrm{Zn} 1-\mathrm{N} 2$	$169.0(1)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$128.9(1)$	$\mathrm{O} 1 w-\mathrm{Zn} 1-\mathrm{N} 1$	$110.0(1)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$97.3(1)$	$\mathrm{O} 1 w-\mathrm{Zn} 1-\mathrm{N} 2$	$82.5(1)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1 w$	$89.3(1)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$78.9(1)$

Symmetry code: (i) $x-1, y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O}^{\text {ii }}$	$0.85(1)$	$1.94(1)$	$2.781(3)$	$171(4)$
$\mathrm{O}^{\mathrm{ii}} w-\mathrm{H} 1 w 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(1)$	$1.86(2)$	$2.638(3)$	$153(4)$

Symmetry codes: (i) $x-1, y, z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.
The data collection software found 10914 reflections that it used to calculate the unit cell; it then partially averaged them to 6341 measured reflections. Carbon-bound H atoms were positioned geometrically and were allowed to ride on their parent atoms $[\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water H atoms were located and refined with a distance restraint of 0.85 (1) \AA.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Dr Shan Gao of Heilongjiang University for the diffraction measurements. They also thank BoHai University, Nankai University and the University of Malaya for supporting this work.

References

Fu, Y. L., Ren, J. L. \& Ng, S. W. (2004). Acta Cryst. E60, m1716-m1718.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Murugavel, R., Krishnamurthy, D. \& Sathiyendiran, M. (2002). J. Chem. Soc. Dalton Trans. pp. 34-39.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Robl, C. (1987). Z. Anorg. Allg. Chem. 554, 79-86.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sun, Y.-Q., Zhang, J. \& Yang, G.-Y. (2002). Acta Cryst. E58, m540-m542.
Wu, C.-D., Lu, C.-Z. Wu, D.-M., Zhuang, H.-H. \& Huang, J.-S. (2001). Inorg. Chem. Commun. 4, 561-564.
Yang, S.-Y., Long, L.-S., Tao, J., Huang, R.-B. \& Zheng, L.-S. (2002). Main Group Met. Chem. 25, 699-700.
Zhang, L.-J., Xu, J.-Q., Shi, Z., Zhao, X.-L. \& Wang, T.-G. (2003). J. Solid State Chem. 32, 32-39.

